29-31 OCTOBRE 2024, Montpellier, France

AN ECONOMIC APPROACH TO RECLAIMED WATER USE: THE DIFFICULTIES OF THE SMALL FARMERS

Amelia Díaz¹, Miquel Salgot² and Manuel Soler³

¹ Grup d'Hidrologia Subterrània. Universitat de Barcelona, Spain and
 ² Reial Acadèmia de Farmàcia de Catalunya, Barcelona, Spain
 ³Universitat Politécnica de Catalunya, Barcelona, Spain

ABSTRACT

Wastewater reclamation and reuse is governed by a number of conditions, established by the rules and regulations enforced by the European Union (EU) and supported / modified by the EU countries National Regulations. The risk evaluation measures mandated by these EU Regulations, indicate that it is compulsory to check the economic viability of any reuse project.

The process of wastewater reclamation and reuse starts with the decision to implement a project and reaches the conclusion when reclaimed water is used for irrigation.

Then, two types of costs can be defined: the ones related to the infrastructure / operation and the non-physical ones. At first sight, the cost of any of the steps of the project must be attributed to the different actors. In the case of the end user, the rules establish that the reclamation process starts after the secondary treatment; i.e., the point of delivery from the WWTP to the Reclamation facility. Before this point, all the costs must be attributed to the previous actors and officially to the water administration, which collects taxes to cover the costs (Díaz and Salgot, 2022).

The reclamation process requires several steps, from the decision of changing the source of supply to the reclaimed water delivery, and a certain number of intermediate steps (Table 1).

Reuse line point	Implies	Comments	Costs attributed to:
Proposition of the	Promoter/developer/water	Initial acceptance of	Administration
reclamation and	authorities' activities	the prospective user	End users if they are
reuse project			asked for
Initial studies	Define the zero-point	Environmental,	The promoter of the
	conditions (before the	social and economic	initiative (can be an
	project)	basis	association of users)
		Wastewater quality	
Decision	Political acceptance	Can modify the	Administration
		calculation basis	
Risk evaluation	Calculation on all aspects	Compulsory	Uncertain
(previous)	related to risk		
Project	Pre-engineering works	Specialised	Uncertain
preparation	Prospective budget	companies	(administration?)
Final project	Construction project	Revisions and	The promoter
		modifications	
Evaluation by the	Health and water-related	Possibility of veto	Administrations
administration	administrations		
Risk evaluation	Evaluation of the expected	After starting	Uncertain / end-user
	water quality results	regular operation	
Modification of	Civil works	Rain management.	Uncertain
infrastructures		Expected mixtures	
and controls		with other water	
		sources	
Controls of	Identification of the	Changes needed	Wastewater
sewerage system	industries and activities,	quite in all projects	management
and discharges	and its wastewater		administration
	management		

Table 1. Reclamation treatment lines and attributed costs

Treatment up to	Alternative disposal:	If all produced water	
the legal point	Water bodies or	is not fully used	
	reclamation facility		
Treatment up to	Additional costs	Usually, advanced	End user or
the quality level		treatments and	subsidies
necessary		disinfection	
Point of delivery	Change of responsibility		No cost
to the end-user			
Use	Adaptation of the existing	Irrigation methods'	End user or
	application systems	changes	subsidies
Description of	Relationships with the	Calculations	End user or
barriers	improvement of the	specified in the rules	associations: Mainly
	quality	must be considered	bureaucracy
Emergency	Knowledgeable by all	Must be easily	
procedures	users	available	
Final use of	All necessary controls	Includes products	End user or / and
reclaimed water		and environmental	subsidies
		distribution	

Shaded in which involves small end-user

End-user(s) or associations of users (e.g. cooperatives) as indicated by the law

A step which has not been considered at all is the information, formation and communication on wastewater reclamation and use. It requires appropriate and end-user adapted methods.

The economy of the projects is related to the infrastructures (investment and operation) necessary to treat wastewater up to the demanded quality. However, there are costs not directly related to infrastructure, such as the inherent bureaucracy, the evaluation of mandatory analytical procedures and negative external effects that may affect groups not directly involved in the process.

Any project is developed in relation with a defined environment, i.e., a nexus soil-water-plants in a specific area. Developing this aspect, it is to note that it is compulsory to adjust the relationship of the cultivated crop to the quality of the brand-new irrigation water, to keep the product marketable.

Then, it is necessary to establish the initial characteristics of the sites, in terms of soil types and its variations, water characteristics in relation with the soils and existing vegetation and wildlife. The impacts, direct and indirect, on the whole environment must also be an important aspect of the practice. Specialists are needed for those evaluations, including social and environmental costs. This also means expenses.

Once the reclamation and reuse project is accepted, a new aspect of economy starts, including direct engineering costs, distribution and application: the structures related to water reclamation, transport to the use sites; and several storage facilities if deemed necessary, final distribution, application and control of the whole system (the nexus).

A discussion appears defining the expenses to be attributed to the end-user or to the administration. A similar approach could indicate to whom reuse barriers' cost should be attributed and who must bear the related control expenses.

A logical and legal approach indicates that the expenses related to the quality demanded for treated wastewater disposal should be paid by the administration, while from this point on (advanced treatment, additional disinfection) the user must cover the expenses. Sometimes, the farmer is forced to exchange the existing supply for reclaimed water, and in this case must be acceptable to subsidize the end user (Generalitat de Catalunya, 2023).

The project is inserted in a real world, with relationships with the people related to the practice in terms of agriculture, commercialization and consumption. There is also a social aspect, including the acceptation of the resource and the crops produced.

The EU establishes that reclaimed water should be delivered to an association not to a single user, which can modify the distribution of expenses. It can establish a new threshold; the delivery point from the distributor to the real enduser. Here, it is necessary to define clearly the circumstances of such a change.

Usually, the associations of users / cooperatives and the like gather a number of partners. Mainly, the irrigation polygons are formed by a number of small users and perhaps a few large landowners. Nevertheless, any combination is possible. Then, the costs are attributed according to the surface owned or to the amount of water used.

One of the main ideas of delivering water to an association is related to the economy of scale; i.e. the general expenses (analysis, evaluation) are assumed by the association, instead of being attributed to any single user. It means a reduction of costs, important especially for the small farmers using reclaimed water or the mixtures with other sources.

From what it is listed in Table 1, it seems evident that part of the costs must be supported by the end-user; but it is not so clear how small users must pay, and if them are capable to support those expenses (Winpenny et al. 2010). At this point, the water authorities should decide if reclaimed water is subsidized or not. Then arises the doubt about

the "legality" of such a measure that seems to contradict the rule that indicates that all costs should be paid by the user.

Then, the discussion reaches the origin of the practice. It is to remember that many times, reclaimed water substitutes good quality water that moves to other uses; and this must be compulsory. Then, there is a reason to subsidize the practice and do not charge the end-user the additional costs incurred. This is the case, for example in the Autonomous Community of Murcia, in Spain. The regional government supplies reclaimed water free of charge to the farmers.

A different approach is what happens after the supply of reclaimed water. The end-user must guarantee by law, that the quality of irrigation water is maintained until the point of use. It happens then, that end-users need to have a water with characteristics good enough to guarantee the success of the crop in the market, as indicated before. Given the usual quality of reclaimed water (e.g. higher salinity than first-hand irrigation water) the mixture with other water resources is common practice.

Another point of discussion is the need to compulsorily record for what purpose (i.e. type of crop) and which amount of reclaimed water is used in any case. It adds to the burden of bureaucracy associated to reclaimed water use.

It is not to forget the controls (a cost) that the end-product must suffer before entering the commercialisation procedure or during it.

Quite in all cases, it is difficult for a single small farmer to evaluate the big amount of analytical data received. For this reason, it is suggested that the association hire an expert for those evaluations (again an added cost).

Knowledge	Guarantee that all the relevant	Establish adequate
0	characteristics of the practice are evident	information and formation
	for the small user	sources
Economy	Study up to which point the practice is	Reliable information
	affordable	
Health-related	Mentalize the farmer of the health-	Specific education
	related risks of the practice	
Relationships	Carefully and previously define if the	Previous agreements are
with distributors	irrigated crops will be accepted	deemed necessary
of produce	throughout the distribution channels	
Reliability	The end-user should trust the	Do not cheat on reuse; the
	agricultural authorities and other actors	trust is difficult to recover

 Table 2. Conditions for the success of reuse practices at the small farmer level

In terms of affordability of the practice and under the point of view of the small user, the attribution of costs is as indicated in the Table 3.

Item	Description	Comments
Infrastructure	From the delivery point on,	Part of the infrastructure can be
	including storage (if existing) and	recovered / recycled from the
	distribution	previous irrigation system
	Irrigation systems	
	Control	
Quality control	To be performed for:	At the indicated / compulsory points
	- Reclaimed water	
	- Produce	
	- Environment	
Bureaucracy	Staff	It is mandatory to declare the use of
	Farmers' employees (additional)	reclaimed water
Evaluation	Specialists on risk evaluation	
Other associated-costs	Energy	Several systems need specific
	Supplies and specific services	additional research
	Support to the farmer's associations	
	Manpower	

Table 3. Distribution of costs for a small farmer

Not all the indicated in Table 3 must be defined in the calculations of each reuse facility, but the costs are specific for every site and must be calculated accordingly. Part of the items should be prorated among the partners (e.g. small farmers) of the project.

Other expenses should be directly attributed to the authorities, like the final evaluation and permissions to operate,

which is usually detailed in official publications which define the plans at different dates (short, medium and long-term) in the future: Those publications usually include an estimation of costs (Generalitat de Catalunya, 2023).

In monetary terms, the discussion arouses on the comparison of costs among:

- Tap water supply (not allowed for irrigation)
- The other sources of irrigation water
- The application expenses (energy, machinery, ...)

In this case, it is not easy to perform the usual calculations for the economic evaluation of wastewater reuse (Hernández-Sancho et al., 2021) in terms of regional approaches.

Conclusions

The success of wastewater reclamation and its use depends on the economy of the process, which in turn creates difficulties to the small farmer which uses such resource: It is not clear if this operator is capable to understand the full economy of the practice as well as support all the expenses included.

It is necessary to inform the small farmer before the beginning of any action in a clear, understandable way, on what he is embarking on when reusing and the constraints he will face.

At a given moment, the small farmer can be forced to abandon his activity, associate into cooperatives and similar to cover the expenses incurred when reusing, or selling the property of the land and become an employee of greater enterprises. It seems necessary to develop alternatives to maintain its present state of the question.

In some cases, the wholesalers or the supermarket chains do not accept crops irrigated with reclaimed water, creating a new burden to the small farmer.

The change of the usual water supply to reclaimed water can be compulsory, which in some way limits the freedom of the farmer to cultivate what he wants, according to the market needs.

The role of water, health and other authorities and its relationships with the end-user should be clearly defined.

REFERENCES

Díaz, A., Salgot, M., 2022. Tools for the economic evaluation of wastewater reclamation and reuse. Desalination and Water Treatment, pp. 1-14. Doi: 10.5004/dwt.2022.28461.

Gancheva, M., McNeill, A., Muro, M., 2018. Water Reuse: Legislative Framework in EU Regions, European Committee of the Regions, Commission for the Environment, Climate Change and Energy Available from: https://data.europa.eu/doi/10.2863/846239

Generalitat de Catalunya, 2023. Pla de reutilització de l'aigua regenerada a Catalunya. Estratègia 2040. (Reclaimed water reuse plan for Catalonia. 2040 strategy).

Hernández-Sancho et al., 2021. Estudi de la viabilitat econòmica i de la rendibilitat social i ambiental d'una nova instal·lació de tractament d'aigües residuals (Study of the economic viability and social and environmental facility for a wastewater treatment facility). Grupo Economía del Agua de la Universidad de Valencia.

Winpenny, J. et al., 2010. The wealth of waste: the economics of wastewater use in agriculture. FAO, Rome.